(Image credit: SUNY at Buffalo) (Image credit: SUNY at Buffalo)

Rapid 3D printing method moves toward 3D-printed organs

Scientists from the University at Buffalo have developed a rapid new 3D bioprinting method that could represent a significant step towards fully-printed human organs.

The work centers on a 3D printing method called stereolithography and jelly-like materials known as hydrogels, which are used to create, among things, diapers, contact lenses and scaffolds in tissue engineering. The latter application is particularly useful in 3D printing, and it’s something the research team spent a major part of its effort optimizing to achieve its incredibly fast and accurate 3D printing technique.

“The technology we’ve developed is 10-50 times faster than the industry standard, and it works with large sample sizes that have been very difficult to achieve previously,” says the study’s co-lead author Ruogang Zhao, PhD, associate professor of biomedical engineering.

Visible Legacy Comment

This article describes early work in a much faster approach to bioprinting. Researchers say the method is particularly suitable for printing cells with embedded blood vessel networks, a nascent technology expected to be a central part of the production of 3D-printed human tissue and organs. From the TechnologyPublisher page linked above you can identify the inventors, easily find other available technologies they're behind and quickly find the direct contact information for licensing at the University at Buffalo Technology Transfer Office. Tech Scouts should also keep an eye on the UB Cell, Gene and Tissue Engineering Center headed by Dr. Stelios Andreadis, SUNY Distinguished Professor of Chemical and Biological Engineering. Step into this ecosystem starting with the widget below. Click through the "Research Foundation of SUNY TTO" node (blue) to find all SUNY technologies.